We consider the problem of constrained multi-objective blackbox optimization using expensive function evaluations, where the goal is to approximate the true Pareto set of solutions satisfying a set of constraints while minimizing the number of function evaluations. For example, in aviation power system design applications, we need to find the designs that trade-off total energy and the mass while satisfying specific thresholds for motor temperature and voltage of cells. This optimization requires performing expensive computational simulations to evaluate designs. In this paper, we propose a new approach referred as {\em Max-value Entropy Search for Multi-objective Optimization with Constraints (MESMOC)} to solve this problem. MESMOC employs an output-space entropy based acquisition function to efficiently select the sequence of inputs for evaluation to uncover high-quality pareto-set solutions while satisfying constraints.